An iterative orthogonal forward regression algorithm

نویسندگان

  • Yuzhu Guo
  • Lingzhong Guo
  • Stephen A. Billings
  • Hua-Liang Wei
چکیده

A novel iterative learning algorithm is proposed to improve the classic orthogonal forward regression (OFR) algorithm in an attempt to produce an optimal solution under a purely OFR framework without using any other auxiliary algorithms. The new algorithm searches for the optimal solution on a global solution space while maintaining the advantage of simplicity and computational efficiency. Both a theoretical analysis and simulations demonstrate the validity of the new algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of nonlinear systems with non-persistent excitation using an iterative forward orthogonal least squares regression algorithm

A new iterative orthogonal least squares forward regression (iOFR) algorithm is proposed to identify nonlinear systems which may not be persistently excited. By slightly revising the classic forward orthogonal regression (OFR) algorithm, the new iterative algorithm provides search solutions on a global solution space. Examples show that the new iterative algorithm is computationally efficient a...

متن کامل

Elastic net orthogonal forward regression

An efficient two-level model identification method aiming at maximising a model's generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisa...

متن کامل

Optimal Power Management to Minimize SER in Amplify and-Forward Relay Networks

This paper studies optimal power allocation to minimize symbol error rate (SER) of amplify-and-forward cooperative diversity networks. First, we analytically solve optimal power allocation problem to minimize SER for three different scenarios, namely, multi-branch single-relay, single-branch multi-relay and multi-branch multi-relay cooperative diversity networks, all subject to a given total re...

متن کامل

Orthogonal Forward Regression based on Directly Maximizing Model Generalization Capability

The paper introduces a construction algorithm for sparse kernel modelling using the leave-one-out test score also known as the PRESS (Predicted REsidual Sums of Squares) statistic. An efficient subset model selection procedure is developed in the orthogonal forward regression framework by incrementally maximizing the model generalization capability to construct sparse models with good generaliz...

متن کامل

Probabilistic neural-network structure determination for pattern classification

Network structure determination is an important issue in pattern classification based on a probabilistic neural network. In this study, a supervised network structure determination algorithm is proposed. The proposed algorithm consists of two parts and runs in an iterative way. The first part identifies an appropriate smoothing parameter using a genetic algorithm, while the second part determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2015